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ABSTRACT 

Resource allocation problems occur in many applications. One example is bike-

sharing systems, which encourage the use of public transport by making it easy to rent and 

return bicycles for short transits. With large numbers of distributed kiosks recording the 

time and location of rental transactions, the system acts like a sensor network for movement 

of people throughout the city. In this thesis, we studied a range of machine-learning 

algorithms to predict demand (ridership) in a bike-sharing system, as part of an online 

competition. Predictions based on the Random Forest and Gradient Boosting algorithms 

produced results that ranked amongst the top 15% of more than 3,000 team submissions. 

We showed that the mandated use of logarithmic error as the evaluation metric 

overemphasizes errors made during off-peak hours. We systematically experimented with 

model refinements and feature engineering to improve predictions, with mixed results. 

Reduction in cross-validation errors did not always lead to a reduction in test set errors. 

This could be due to overfitting and the fact that the competition test set was not a random 

sample. The approach in this thesis could be generalized to predict use of other types of 

shared resources.   
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I. INTRODUCTION 

A. STUDYING URBAN MOBILITY THROUGH BIKE-SHARING SYSTEMS 

Population growth and rapid urbanization create increasing demand for public 

services such as public transportation, causing considerable strain to the infrastructure of 

cities around the world (Belissent, Mines, Radcliffe and Darashkevich, 2010). Numerous 

“smart city” initiatives have been launched to leverage information and communications 

technology to meet these demands with limited resources. A recurring challenge is how 

one can derive insights or actionable intelligence from the increasing amounts of data being 

collected. In this thesis, we tackle an instance of this problem by studying urban mobility 

through data collected from a bicycle-sharing system. We use machine-learning algorithms 

to predict the demand for bicycles based on historical rental patterns and weather 

information. This is a different approach to traditional time-series analysis used in 

marketing theory (see Chapter II). 

B. THE BICYCLE-SHARING PROBLEM AND COMPETITION 

Bike-sharing systems allow urban commuters to rent bicycles from automated 

kiosks at one location and to return them at another location. Rental prices are often 

designed to encourage short trips lasting less than an hour. One of the key ideas behind 

bicycle sharing systems is to provide a “last mile” solution for commuters to travel between 

a transit point (e.g., subway station) and their home or workplace, thereby reducing their 

reliance on vehicles. Bike-sharing systems have existed since the 1960s but only seen 

widespread adoption in the past decade thanks to advances in information technology 

(Shaheen, Martin, Chan, Cohen, & Pogodzinski, 2014). As of June 2014, there were public 

bike-sharing systems in 712 cities globally, collectively operating around 37,500 stations 

and 806,200 bicycles (Shaheen et al., 2014). Due to the extensive use of technology to 

automatically track rentals and returns, bike-sharing systems generate much data on trips. 

From this perspective, bike-sharing systems are analogous to a sensor network and the data 

generated presents an opportunity for transport planners and researchers to better 

understand and support urban mobility by mining the dataset (Kaggle Inc., 2014). 



 2 

In this thesis, we use a range of machine-learning techniques to model and predict 

the hourly demand for bicycles in a bike-sharing system by mining data on historical rental 

patterns and weather information. This problem was posted as a contest on the online data-

mining competition platform Kaggle (www.kaggle.com). The dataset was provided by 

Fanaee-T and Gama (2013) and was hosted in the University of California, Irvine (UCI) 

machine-learning repository. The bike-sharing system in question was Capital Bikeshare, 

which operated 1,650 bicycles and 175 stations across the District of Columbia, Arlington 

County, and the City of Alexandria in November 2012 (LDA Consulting, 2013, p. i). The 

dataset contained the aggregate hourly demand for bikes and weather information such as 

temperature, humidity, and wind speed (see Chapter III for details on the dataset). Public 

holidays were also indicated in the dataset.   

The online competition was held between May 28, 2014 and May 29, 2015. 

Although the official competition is now closed, Kaggle members are still able to make 

unofficial submissions for learning purposes, as with all other Kaggle-hosted competitions. 

C. COMPETITION RULES 

The training set for the competition included the hourly demand for bicycles (i.e., 

number of bicycles currently rented out) and weather conditions in the first 19 days of each 

month in 2011 and 2012. The test set is made up of the remaining 9–12 days of each month. 

Participants were not allowed to use any other data sets other than the one provided (for 

instance, they could not use weather data from other sources). The competition rules state 

that the hourly demand for the test set must be predicted “using only information available 

prior to the rental period” (Kaggle Inc., 2014).   This rule caused some controversy on 

online forums linked to the competition. While the rule was imposed to introduce more 

realism, it creates challenges from a modeling perspective. Instead of building a single 

model based on the entire training set, 24 sub-models must be built using progressively 

more data as each month progresses. It means that predictions for the earlier months are 

based on less data. For example, the predictions for January 20, 2011 to January 31, 2011 

can only be made based on 19 days of data between January 1, 2011 and January 19, 2011. 

http://www.kaggle.com/
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Judging from the online forums linked to the competition and code that was 

published by some participants (publishing code did not go against the rules as long as the 

code was shared openly to everyone), we noticed many teams did not follow the 

previously-mentioned rule. Although this cannot be easily verified, most teams that were 

highly ranked appear to have used the entire dataset to build a single model to predict 

demand for all the rental periods in the test set. Predictions using 24 sub-models were 

essentially extrapolations, while predictions made by the single model, apart from being 

trained on a much larger dataset, were interpolations and can be expected to be more 

accurate. Despite the controversy, the competition rules remained unchanged throughout 

the period of the competition and it was not clear how the organizers could tell if a 

submission followed the rules, since only the results needed to be submitted. Fortunately, 

the competition was for “fun and practice” (Kaggle Inc., 2014), so it did not involve a prize 

or other benefits. Since the competition allowed for teams to submit two result sets, we 

made one submission that followed the rules (using 24 sub-models) and one which did not 

(using a single model). We added comments in the submission which clearly flagged out 

which submission did not follow the rules. Our single model submission ranked 141st out 

of 3,252 teams, and our 24 sub-model submission would have ranked us 755th. Since the 

full dataset was relatively small for a data-mining application (19 days x 24 months=456 

days of data), we decided it was not meaningful to use subsets of the data for training. To 

meaningfully study the problem, the rest of this thesis is based on a single-model approach.   

Taking part in the competition provided more excitement for our work and an 

online community that is actively engaged in the same problem. Many participants have 

posted their solutions online. From reading some of the solutions, we note that many teams 

have taken similar approaches to the problem and have had similar findings. In this thesis, 

we can neither claim to have a completely novel approach nor the best solution, since 140 

teams have a better score than we do on the test set. Nonetheless, we hope to add value to 

the discussion by sharing findings from the experiments we carried out, including those 

that worked and those that did not. 
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D. APPROACH 

In the first stage, we tested a range of machine-learning algorithms to identify those 

that worked best for the problem. The algorithms we tested were Ridge Regression, 

Support Vector Regression, Gradient Boosting, and Random Forest. We used a range of 

software packages in R, a popular programming language for data analysis, tweaking the 

parameters extensively to try to maximize each algorithm’s performance for the training 

and test set. After identifying the most suitable algorithm, we tried to improve the model 

further by fine-tuning the modeling in a second stage, for example, by predicting demand 

from casual users and registered users separately. This two-stage approach was adopted to 

reduce the dimensionality of the problem. 

E. CONTRIBUTIONS 

Through this thesis, we provide empirical results of applying a range of machine-

learning algorithms to predict demand for a service. We found that Random Forest and 

Gradient Boosting produced the best results for this application. From analyzing the results 

and a simple scenario analysis, we showed that using RMSLE as the evaluation metric 

overemphasizes missed predictions during off-peak hours. We systematically fine-tuned 

the Random Forest model through a series of experiments. We showed that reductions in 

cross-validation error did not necessarily result in improvements in the test set error. The 

lessons learned from this study could be applied to similar problems to predict demand for 

other forms of transport, goods, or logistic services, and may be of particular interest to 

marketing, operations, and infrastructure planners. 

F. OVERVIEW OF THESIS 

In Chapter II, we provide a brief review of the regression algorithms used in this 

thesis. In Chapter III, we discuss the variables in the dataset and the evaluation function as 

well as our modeling approach, including data pre-processing and the modeling 

refinements. In Chapter IV, we present the results of our findings. Finally, in Chapter V, 

we provide a summary of lessons learned and possible follow on work. 
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G. TERMINOLOGY 

The field of machine learning is influenced by other fields such as statistics (data 

mining) and computer science (artificial intelligence). This is reflected in the different 

terms used to describe the same concept or object. In this thesis, we use some terms 

interchangeably depending on what is most commonly used in academic literature.  “Target 

variable” and “dependent variable” refer to the variable to be predicted by the model (i.e., 

hourly demand).  “Input variables,” “independent variables,” “features,” or “factors” refer 

to variables that are used as input to the model. They are also referred to as “attributes” in 

some literature.  “Model” refers to a theory relating the independent variables to the output 

variable, and is the end product of running one or more machine-learning algorithm on a 

training set. A model can make predictions when it is given input variables from a test set. 

A modeling approach refers to how we model a problem, which translates to how we pre-

process data, how we select features, and how we chain multiple algorithms and sub-

models together. 
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II. USING MACHINE LEARNING ALGORITHMS FOR 
DEMAND FORECASTING 

Demand forecasting can lead to better resource allocation decisions for any 

organization concerned with meeting customer expectations, improving operational 

efficiency, and reducing waste. A wide range of methods for demand forecasting are in 

use, particularly in marketing theory. They can be categorized into quantitative and non-

quantitative methods. A classical quantitative approach is the use of time-series analysis 

methods like autoregressive integrated moving average (ARIMA) where we decompose a 

time series into long term trends, seasonal and cyclical variations, and random fluctuations. 

Methods like ARIMA are called autoregressive because the forecast is based solely on past 

values of the demand itself. Its advantage is that one can produce models easily by 

observing the demand over time. However, autoregressive methods are unable to take into 

account causal factors that impact demand, simply because they do not take in input other 

than past values of demand. For example, an exceptionally warm week in winter may cause 

bicycle rentals to spike beyond seasonal norms. An autoregressive model would not be able 

to predict this spike if it is unable to take temperature as an input. 

In this thesis we studied four machine-learning algorithms for predicting hourly 

demand for bicycles. First, we applied Ridge Regression, a linear-regression algorithm 

which serves as a baseline for comparison. Next, we studied three relatively modern 

nonlinear learning algorithms, Gradient Boosting, Support Vector Machines, and Random 

Forest. The algorithms were selected based on a study by Caruana and Niculescu-Mizil in 

2006. By evaluating 10 supervised learning methods using 11 different test problems across 

a wide range of performance metrics, Caruana and Niculescu-Mizil (2006) emphasized that 

“boosting, random forests, bagging, and SVMs achieve excellent performance that would 

have been difficult to obtain just 15 years ago” (p. 167). It should be noted that Caruana 

and Niculescu-Mizil’s research was done on binary classification problems, unlike the 

regression problem in this thesis, and that the findings of their research were more nuanced 

than simply saying these were the three best algorithms available. Nonetheless, the selected 

algorithms performed well in Caruana and Niculescu-Mizil’s research on the mean-squared 
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error metric, which is also what we are using in this thesis as the evaluation function. We 

provide a brief review of these four regression algorithms. 

A. RIDGE REGRESSION 

Linear regression methods based on ordinary least-squares are easy to implement 

and interpret. Simple linear regression works well for simple problems with limited number 

of independent variables. However, it can be prone to overfitting when there are a large 

number of independent variables. This problem could be solved either by reducing the 

number of variables (subset selection) or shrinkage methods (Hastie, Tibshirani, & 

Friedman, 2009, p. 61). One well-known shrinkage method is Ridge Regression where we 

introduce a complexity parameter, λ, when minimizing a “penalized residual sum of 

squares” to shrink the regression coefficients towards zero (Hastie et al., 2009). This has 

the effect of penalizing complex models (i.e., models with many non-zero regression 

coefficients). Although we do not expect Ridge Regression to do particularly well against 

nonlinear methods, it serves as a baseline for comparison with other methods. In this thesis 

we use the R package glmnet for its implementation of Ridge Regression (Friedman, 

Hastie, Noah & Tibshirani, 2015). 

B. GRADIENT BOOSTING 

Ensemble methods refer to the combination of a set of individually trained 

classifiers to produce predictions that are better than that produced by any of the constituent 

classifiers (Opitz & Maclin, 1999). Boosting is a class of ensemble learning which 

combines a set of weak learners into a strong learner (Freund & Schapire, 1997). In 1997, 

Freund and Schapire introduced Adaboost, or adaptive boosting, which has since become 

one of the most well-known boosting algorithms. In Adaboost, each subsequent classifier 

is trained on a reweighted dataset obtained by increasing the relative weight of instances 

that are misclassified by preceding classifiers (Hastie et al., 2009). Gradient Boosting 

Machine uses decision trees as weak classifiers which it combines.   
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C. SUPPORT VECTOR REGRESSION 

The idea for support vector machines (SVM) originated in the 1960s as a linear 

classification method (Vapnik & Lerner, 1963). In 1996, a version of SVM called Support 

Vector Regression was introduced by Vapnik, Golowich, and Smola (1996). By the late 

1990s, support vector machines emerged as one of the leading classifiers for OCR, object 

recognition, and regression (Smola & Schölkopf, 2004). The SVM algorithm is based on 

finding the hyperplane that best separates two classes in a multi-dimensional space. In this 

thesis, we use the svm function in the e1071 R package (Meyer, Dimitriadou, Hornik, 

Weingessel, Leisch, Chang & Lin, 2015) to perform Support Vector Regression on the 

bicycle-sharing dataset. We tuned the model by varying the basis function, cost parameter 

C, and gamma (for the radial basis function). 

D. RANDOM FOREST 

Random Forest (Breiman, 2001) is another ensemble method which is currently 

very popular. The algorithm makes use of a collection of de-correlated decision trees to 

make a more accurate prediction. Each tree is constructed using a bootstrapped sample of 

the training set (i.e., a sample that is the same size as the training set, but sampled with 

replacement). When growing each tree, at each step, a random subset (of size m) of all the 

independent variables is chosen as candidates for splitting, and the best split is chosen from 

these m variables (Hastie et al., 2009). Due to the randomness of their training set and 

features, each tree may produce a different prediction for the same instance in the test set. 

For classification problems, each tree predicts a class, and the mode of the votes (most 

common class) is chosen as the result. For regression problems, each tree predicts a value 

by taking the mean of the target variable across all instances in the same terminal leaf node. 

The mean of the prediction across the trees is then taken and used as the final prediction. 

Through the voting mechanism, the random forest method corrects for the tendency of each 

decision tree to overfit the training set. According to Hastie et al. (2009), random forest 

achieves similar performance to boosting, and is easier to train and tune. In this thesis, we 

use the randomForest R package (Liaw & Wiener, 2012), and mainly tune the number of 

trees (ntree) and the number of variables randomly sampled (mtry).  
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III. MODELING APPROACH  

In this chapter, we provide more details on the variables in the dataset, the evaluation 

criteria for the competition, and the data pre-processing we performed before applying the 

four machine-learning algorithms. Finally, we describe the experiments to fine-tune the 

models and improve prediction accuracy once the best learning algorithm was chosen. 

A. DETAILS OF THE DATASET 

Capital Bikeshare is a publicly-owned and privately-operated bike-sharing system. 

Members of the public can use the bicycles docked at kiosks distributed around the District 

of Columbia, Arlington County, Alexandria, and Montgomery County. Non-registered 

users can directly use their credit cards at each station to join as members for 24 hours ($8) 

or three days ($17). This gives them the right to make as many trips as they wish during 

this period. The first 30 minutes of each trip is free, after which additional fees are charged. 

This discourages users from holding onto a bicycle for extended periods. Regular users can 

sign up for 30-day ($28) or annual memberships ($85) that offer savings over short-term 

memberships. 

The data for the Kaggle competition was provided by Fanaee-T and Gama (2013), 

who combined data from Capital Bikeshare (https://www.capitalbikeshare.com/trip-

history-data) and weather information from Freemeteo (http://www.freemeteo.com). The 

dataset included datetime, season, holiday, workingday, weather, temp, atemp, humidity 

windspeed, casual, registered and count. Tables 1 and 2 present the types of independent 

variables and the dependent variables, respectively, including a brief description and 

possible values each variable can take. There is an instance of each of these variables for 

each hour in the first 19 days of each month. The full description of the dataset, rules of 

competition, and evaluation criteria are available on the competition webpage 

(https://www.kaggle.com/c/bike-sharing-demand). 

https://www.kaggle.com/c/bike-sharing-demand
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Table 1.   Detailed Description of Dataset (Independent Variables) 

 Independent 
Variables Description 

1 datetime hourly date + timestamp (e.g., 1/2/2011  7:00:00 AM) 
2 season 1 = spring, 2 = summer, 3 = fall, 4 = winter  
3 holiday 1 = holiday, 0 = not holiday 
4 workingday 1 = working day, 0 = holiday or weekend 
5 weather 1 = Clear, Few clouds, Partly cloudy, Partly cloudy  

2 = Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist 
3 = Light Snow, Light Rain + Thunderstorm + Scattered clouds, 
Light Rain + Scattered clouds   
4 = Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog 

6 temp temperature (Celsius) 
7 atemp “feels like” temperature (Celsius) 
8 humidity relative humidity (%) 
9 windspeed windspeed (km/h) 

Table 2.   Detailed Description of Dataset (Dependent Variables) 

 Dependent 
Variables Description 

1 casual number of non-registered user rentals initiated  
2 registered number of registered user rentals initiated 
3 count number of total rentals (To be predicted) 

 

As explained in Chapter I, the training set contains data for the first 19 days of each 

month in 2011 and 2012, (i.e., January 2011 to December 2012). There are three dependent 

variables, namely casual, registered, and count. Casual refers to the number of rentals 

made by non-registered users for one-day to three-day passes. Registered refers to the 

number of rentals made using a monthly or annual pass. Count is simply the sum of casual 

and registered. The test set contains the nine independent variables for each hour in the last 

nine to 12 days of each month, from which competitors need to predict only the count. It 

should be noted that count refers to the number of bicycles that are actually checked out. 

Strictly speaking, the provided data does not give the actual demand, as that would include 
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users who wanted a bike but did not manage to get one; for example, if the kiosk had run 

out of bikes. 

B. EVALUATION CRITERIA 

Submissions were to be evaluated using the root-mean-squared logarithmic error 

(RMSLE), which is calculated as follows (https://www.kaggle.com/c/bike-sharing-

demand/details/evaluation): 

( ) ( )( )2

1

1 ln 1 ln 1
n

i i
i

p a
n =

+ − +∑  

In the RMSLE equation, n is the number of hours in the test set, and pi and ai are 

the predicted count and the actual count for a given hour respectively. Taking the 

logarithmic error ensures that missed predictions for peak hours do not overly dominate 

those for off-peak hours. However, as we discuss later, the RMSLE overcompensates for 

errors during off-peak hours from an economic perspective. 

C. DATA PRE-PROCESSING 

Some data pre-processing was necessary to prepare the data set for the selected 

machine-learning algorithms. The single datetime variable was split into four separate 

independent variables: year, month, day (of the week) and hour. This expanded the set of 

independent-variable types from 9 to 12 (see Table 3). Variables 1 to 8 were modeled as 

categorical variables (or “factors” in R terminology) whereas variables 9 to 12 were 

modeled as numeric variables. 

https://www.kaggle.com/c/bike-sharing-demand/details/evaluation
https://www.kaggle.com/c/bike-sharing-demand/details/evaluation
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Table 3.   Independent Variables after Data Pre-Processing 

 Independent 
Variables Variable Type 

1 year Categorical (2011 or 2012) 
2 month Categorical (1 to 12) 
3 day  Categorical (Sunday to Monday) 
4 hour Categorical (0 to 23) 
5 season Categorical (as per Table 1) 
6 holiday Categorical (as per Table 1) 
7 workingday Categorical (as per Table 1) 
8 weather Categorical (as per Table 1) 
9 temp Numeric (as per Table 1) 
10 atemp Numeric (as per Table 1) 
11 humidity Numeric (as per Table 1) 
12 windspeed Numeric (as per Table 1) 

 

Instead of using the actual numbers for the casual, registered, and count directly to 

train the algorithms, we used their logarithm log(casual+1), log(registered+1) and 

log(count+1) as the target variables to be predicted (see Table 4). This was done to mirror 

the RMSLE used as the evaluation function. 

Table 4.   Dependent Variables after Data Pre-Processing 

 Dependent 
Variables Description 

1 log casual ln(casual + 1) 
2 log registered ln(registered + 1) 
3 log count ln(count + 1) 

The natural log of the hourly demand was taken to mirror the RMSLE evaluation function 
used in the competition.  
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D. MODELING APPROACH 

1. First-Cut Screening for Best Algorithm 

Even with only four algorithms and a relatively manageable dataset, it was still 

time-consuming to completely explore the permutations of tuning parameters for each 

algorithm and the different modeling approaches that were possible. As a first pass, we 

used the four algorithms covered in Chapter II to predict log count. In this screening phase, 

we directly used the test set error to evaluate the algorithms instead of cross-validation. For 

each algorithm, we diligently tuned the parameters using a grid search, but in a non-

exhaustive manner. We experimented with the scikit-learn machine-learning library for 

Python and a range of R packages before settling on R. We achieved similar performance 

on both R and Python, but chose R because we were relatively familiar with the syntax and 

the RStudio IDE. Table 5 presents the R packages that were used. 

Table 5.   List of R Packages Used 

 Algorithm R package 
1 Ridge Regression glmnet 
2 Boosting gbm 
3 Support Vector e1071 
4 Random Forest randomForest 

 

2. Fine-Tuning the Model 

Once we selected our best algorithm (i.e., Random Forest), we proceeded to 

experiment with fine-tuning our model to improve prediction accuracy. By fine-tuning the 

model, we are referring to modifications other than tweaking the parameters of the learning 

algorithm, for example, adding or removing features, or building separate sub-models, etc. 

a. Building Two Separate Models for Casual Users and Registered Users 

Casual users and registered users are likely to exhibit different behaviors and be 

affected differently by weather conditions or whether it is a public holiday. An obvious 

approach is to train two separate models for casual and registered and summing up their 
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respective predictions. However, it is not obvious that it would improve the prediction 

accuracy over learning and predicting the aggregate (count) directly due to possible 

interaction effects. 

b. Feature Selection 

In the algorithm-screening phase, we used all available independent variables as 

features. However, our dataset contains multiple correlations and potentially weak features. 

For example, working day is clearly correlated with weekday and holiday, and season is 

correlated with month. Each of the four algorithms tested contains a mechanism to deal 

with redundant features and overfitting. For example, Ridge Regression uses regularization 

as described in Chapter II, and Random Forest randomizes the features that are used to 

each tree. Feature selection is another possible approach to improve prediction accuracy 

by directly reducing the initial number of features used to train the model. While this can 

be done programmatically, we do this manually in this thesis. 

c. Introducing Features to Improve Prediction for Off-Hours 

From our analysis of the results and RMSLE metric, we noticed that errors during 

off-peak hours, particularly between midnight and 6 a.m., significantly contributed to the 

overall RMSLE. We hypothesized that demand during these hours was driven by whether 

the previous or following day was a working day. We introduced three additional binary 

variables: wee_hour, work_ytd and work_tmr to experiment if they could help improve 

prediction accuracy. Table 6 describes these features. 

Table 6.   Features to Improve Prediction for Off-Hours 

 Independent 
Variables Description 

1 wee_hour 0 = 6 a.m. to midnight 
1 = midnight to 6 a.m. 

2 work_ytd Takes on the value of working_day for 
the previous day 

3 work_tmr Takes on the value of working_day for 
the following day 
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d. Introducing Features to Account for Temporal Dependencies 

In our first pass modeling, the time-related variables (year, month, day, and hour) 

are modeled as categorical variables. This made it harder for our model to account for 

temporal dependencies such as the growth in the number of bikes and members. We tried 

to alleviate this problem by creating a new feature, a seven-day moving average (MA7). In 

this way, each prediction can be made with the average hourly demand for the past week 

as a feature.   

Computing the seven-day moving average for this dataset was complicated by two 

challenges. Firstly, we were unable to compute a moving average for the first seven days 

in January 2011 because we do not have data for December 2010. Instead, we used the 

average hourly demand for January 1, 2011 to January 7, 2011 as the moving average for 

the entire seven days. Secondly, since the test set was formed from the last nine to 12 days 

of each month, we did not know the hourly demand on those days. This means that the 

sliding window to compute the moving average would encounter missing values for first 

seven days of each month (affecting the training) and the last nine to 12 days of each month 

(affecting the prediction). 

To solve this problem, we used the model from the first pass to predict the hourly 

demand for the test set to infer the missing values. The moving average was then computed 

for this new dataset and used to train a second model that took this additional independent 

variable as an input. We think that this approach was reasonable since the seven-day 

moving average does not fluctuate much from day to day, and the predicted values from 

our first pass model were accurate enough for this purpose. 

We also introduced Week Number as a feature, defined as the number of weeks 

elapsed since January 1, 2011 (the start of the training set). Table 7 presents the features 

introduced to account for temporal dependencies. 
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Table 7.   Features to Account for Temporal Dependencies 

 Independent 
Variables Description 

1 MA7 7-day moving average for hourly 
demand over the previous week. 

2 Week 
Number 

Number of weeks elapsed since 1 Jan 
2011 

 

3. Final Model 

We put our final model together based on the Random Forest algorithm as well as 

our findings from the experiments previously described.   
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IV. RESULTS 

In this chapter, we present the results of our preliminary analysis of the data, the 

results of using different machine-learning algorithms to predict hourly demand, and the 

effectiveness of various modifications we made to the model using the Random Forest as 

the prediction algorithm. 

A. ACCOUNTING FOR MISSING DATA 

After pre-processing the data, we discovered missing rows in the training data. The 

training set had 10,886 rows instead of the 10,944 rows (19 days x 24 months x 24 hours) 

we were expecting. There were 12 consecutive hours of data missing on January 18, 2011 

from midnight to 11 a.m. It was a normal working Tuesday without precipitation. We 

assume that the system was shut down during those hours and will not try to impute these 

values. We also noticed that the demand for 12 p.m. and 1 p.m. on that day to be lower 

than usual, possibly due to ramping up after resumption of services. We manually removed 

the two entries. Other than that, all the remaining data that was missing occurred between 

midnight and 6 a.m. These missing entries were either for a single hour (e.g., 2 a.m.) or 

two consecutive hours (3 a.m.–4 a.m.). We assumed that these missing entries meant that 

there were no users during those hours, since none of the 10,886 rows in the training data 

recorded zero as a total count. Therefore, we filled in these missing data with zeros for 

casual, registered, and count because these missing values may skew our predictions to 

the upside for hours between midnight and 6 a.m. Our training set contained 10,930 rows 

after these corrections. 

B. ANALYSIS OF DATA 

Before we apply the machine-learning algorithms described in Chapter II, it is 

interesting to manually visualize the data. Figure 1 shows the growth in the hourly demand 

for bikes (between 7 a.m. and 7 p.m.) from 2011 to 2012. We can see that the median has 

grown from about 190 to about 320. Correspondingly, we see a much larger variation in 

hourly demand in 2012. 
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Figure 1.  Growth in Hourly Demand (7 a.m. to 7 p.m.) from 2011 to 2012 

 
 

Figure 2 shows the seasonal variations in hourly demand (7 a.m. to 7 p.m.) from 

casual and registered users across the four seasons (1=spring, 2=summer, 3=fall, 

4=summer). In this dataset, each season lasts exactly three months, with “spring” (season 

1) actually spanning January 1 to March 31. We can see that casual users are less likely to 

rent a bike during the colder months of spring (season 1) and winter (season 4). This is 

possibly due to there being more recreational users (e.g., tourists) in summer and fall. 

Figure 2.  Seasonal Variations 

 
Figure 3 shows the variation in hourly demand for Casual, Registered, and All 

(Casual + Registered) users both for working days and non-working days. 
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Figure 3.  Hourly Demand for Casual, Registered and All Users on Working 
Days vs. Non-Working Days 

 
Figure 3 shows that demand on working days is driven primarily by registered users 

with spikes in demand and variability during peak hours. On non-working days, registered 

users still account for more than half the demand, but casual users account for much of the 

variability. Non-working days do not exhibit clear peak hours, with most of the demand 

spread over a wider duration between 10 a.m. and 7 p.m. 
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The trends and patterns we have observed so far may trigger more questions. For 

example, is it more significant to look at monthly variations rather than seasonal variations?  

What part do weather conditions play?  Visualizing the data by decision trees may give 

some insights. Using the rpart package (Therneau, Atkinson, and Ripley, 2015) and plotted 

using the prp package (Milborrow, 2011), Figures 4–6 are decision trees that are produced 

by finding the best split that maximizes the difference in between group sum-of-squares. 

Only the first three to four layers of the decision trees were plotted to fit into this document. 

Figure 4 shows the decision tree for hourly demand by registered users between 7 a.m. and 

7 p.m. The nodes contain the average hourly demand before each subsequent split as we 

go down the tree. The branches are annotated with the conditions of each split. In Figure 

4, the tree mirrors the analysis we did with the box plots with no real surprises. Rentals by 

registered users spike at peak hours (i.e., 8 a.m., 5 p.m., and 6 p.m.) on working days, user 

growth from 2011 to 2012 accounts for significant variation in demand, and there is a drop 

in demand during off-peak hours in the months from January 2011 to April 2011.   

Figure 4.  Decision Tree for Registered Users (7 a.m. to 7 p.m.) 

 
The decision tree for casual users is in Figure 5. If we follow the rightmost path 

along the tree, we can see that casual users tend to rent bikes between 10 a.m. and 7 p.m., 

more so on non-working days and when temperatures are above 22 degrees Celsius. The 

demand is also higher in 2012. These observations are also consistent with those made 

earlier. 
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Figure 5.  Decision Tree for Casual Users (Depth=4) 

 
It is interesting to delve further down the decision tree to observe how casual users 

behave. Figure 6 is the subtree branching down from the rightmost leaf node in Figure 5. 

This time, apart from printing the average hourly demand in the node, we also print the 

number of instances (n) for each node. When we traverse this sub-tree by moving down 

two branches to the right, we notice that casual users rent a lot fewer bikes if it was a public 

holiday compared to other non-working days (i.e., weekends), possibly because casual 

users tend not to come or stay in town during holidays. We can also see in the rightmost 

subtree a drop in demand when the humidity is above 82 %, possibly because it is much 

less comfortable to take a leisurely ride when it is humid. However, we should consider 

this observation with some skepticism, because there are only three instances in this 

terminal node. 
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Figure 6.  Sub-Tree for Casual Users from Rightmost Node in Figure 5 

  
Note that this tree branches from the rightmost leaf node in Figure 4. The month of 
December is missing because there were no hours in December 2012 for a non-working 
day where the temperature was above 22 degrees. 

A single decision tree is not only easy to interpret, but can also serve as a model for 

prediction. However, a single decision tree is prone to under-fitting when the depth is small, 

or overfitting when the depth is too high. Nonetheless, we decided to include a decision 

tree as another baseline to compare against other algorithms. 

C. ALGORITHM SELECTION FROM FIRST-PASS MODELING 

The results of the first-pass modeling using five different algorithms are presented 

in Table 8. The RMSLE scores were obtained from the Kaggle website when we submitted 

our predictions for the test set. The rankings are based on the final leaderboard 

(https://www.kaggle.com/c/bike-sharing-demand/leaderboard), reflecting where each 

algorithm would have ranked out of the best submissions of 3,252 teams. We can see that 

Gradient Boosting with decision trees and Random Forest produced much better results 

than the other algorithms. The results confirm the observation by Hastie et al. (2009) that 

Boosting and Random Forest produce similar results with an RMSLE of 0.420 vs. 0.424, 

respectively. Even the single decision tree (0.546) performed better than Support Vector 

Regression (0.720) and Ridge Regression (0.6231). This suggests that decision-tree 

https://www.kaggle.com/c/bike-sharing-demand/leaderboard
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methods are naturally more suited for this application. Perhaps surprisingly, Support 

Vector Regression actually performed worse than Ridge Regression. 

Table 8.   RMSLE and Ranking Obtained by Five Different Algorithms 

Algorithm RMSLE 
(Test Set) Ranking 

Ridge Regression 0.62310 2318 
Single Decision Tree 0.54556 2047 

Gradient Boosting 0.41963 446 
Support Vector Regression 0.71982 2560 

Random Forest 0.42388 505 
The results were obtained by simply applying the algorithms directly to predict log(count) 
and by tuning the parameters for each algorithm to obtain their best results respectively. 

While it is possible that the results of each algorithm can be improved further by 

spending more time on adjusting the parameters or by feature engineering, we decided to 

choose only the Gradient Boosting and Random Forest algorithms for further analysis and 

modeling, since they appear to be better suited for this problem. 

D. VARIABLE IMPORTANCE FROM RANDOM FOREST 

Gradient Boosting and Random Forest are ensemble methods that combine 

predictions from multiple decision trees in different ways to produce an often-better 

prediction. However, the better prediction comes at the cost of interpretability. While a 

single decision tree is easily interpretable, a sequence of 1,000 boosted trees in Gradient 

Boosting or 500 random trees in Random Forest is difficult to interpret and visualize. 

Fortunately, the Random Forest package in R allows us to calculate the importance of each 

factor in two ways (Liaw & Wiener, 2012). The first measure (%IncMSE) is calculated by 

quantifying the average increase in mean squared error across the trees when the values of 

the variable in question are randomly permuted before making a prediction, compared to 

predictions made without random permutation (Strobl, Boulesteix, Zeileis, & Hothorn, 

2007). These predictions are made on out-of-bag samples (i.e., samples that were not 

selected during bagging for training the tree). The second measure (IncNodePurity) is the 

total decrease in node impurities (i.e., total decrease in residual sum of squares) over each 
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time the variable in question is used for splitting a leaf node in the tree (Liaw & Wiener, 

2012). This is also averaged across all the trees in the forest. Tables 9 and 10 present the 

variable importance for registered users and casual users, respectively. Once again, we can 

see casual users are more affected by weather variables than registered users. 

Table 9.   Variable Importance for Registered Users 

Variable %IncMSE IncNodePurity 
hour 3.098 15954.7 
workingday 0.207 560.7 
day 0.201 764.7 
year 0.138 742.6 
month 0.116 775.7 
temp 0.084 753.2 
atemp 0.081 777.1 
humidity 0.075 885.8 
season 0.055 310.7 
weather 0.026 217.4 
windspeed 0.010 207.1 
holiday 0.002 31.6 

This table was produced setting the importance option to TRUE in the randomForest R 
package and sorted by decreasing %IncMSE (i.e., increase in mean-squared error). 

Table 10.   Variable Importance for Casual Users 

Variable %IncMSE IncNodePurity 
hour 2.146 12554.0 
temp 0.398 3151.7 
atemp 0.320 2957.9 
workingday 0.215 822.6 
month 0.170 1240.7 
day 0.160 876.4 
humidity 0.152 1292.4 
year 0.057 277.4 
season 0.047 286.6 
weather 0.037 353.5 
windspeed 0.017 368.7 
holiday 0.003 30.4 

 



 27 

Although the R package is able to estimate variable importance this way, it is 

difficult to interpret this importance quantitatively because each variable is different. Strobl 

et al. (2007) assert that the approach used to calculate variable importance in the random-

forest package is biased in favor of variables with many categories and continuous 

variables, and propose alternative methods to get a more accurate measure of importance. 

We nonetheless use Tables 9 and 10 as a point of reference to perform feature selection to 

fine-tune the model. 

E. DISCUSSION ON THE RMSLE EVALUATION FUNCTION 

We discuss the impact of using root-mean-squared logarithmic error (RMSLE) as 

the evaluation metric. Using the logarithmic-based calculation ensures that the errors 

during peak hours do not overshadow the errors made during off-peak hours. Table 11 

gives us some insight to how an actual missed prediction affects the RMSLE. 

Table 11.   Missed Predictions vs. Logarithmic Error 

Scenario Actual 
demand 

(a) 

Predicted 
demand 

(p) 

Real 
error 
(a-p) 

% error  
((p-a)/a) 

log actual  
log (a+1) 

log 
predict 

(log (p+1)) 

Log error 
(log(a +1)-
log(p+1)) 

1 0 1 1 NA 0.000 0.693 0.693 
2 0 2 2 NA 0.000 1.099 1.099 
3 2 3 1 50% 1.099 1.386 0.288 
4 2 4 2 100% 1.099 1.609 0.511 

5 5 6 1 20% 1.792 1.946 0.154 
6 10 12 2 20% 2.398 2.565 0.167 
7 100 120 20 20% 4.615 4.796 0.181 
8 500 600 100 20% 6.217 6.399 0.182 
9 1000 1200 200 20% 6.909 7.091 0.182 

10 1000 1100 100 10% 6.909 7.004 0.095 

 

A 20% over-prediction produces a consistent logarithmic error (0.154–0.182) when 

the actual demand ranges from 5 to 1000 (Scenarios 5–10). While this is desirable from a 

mathematical perspective, it is less meaningful from an economic perspective since a 20% 

miss during peak hours has a greater cost than at other times. Similarly, missed predictions 
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when actual demand is less than 5 could easily result in large logarithmic errors, as can be 

seen in the first four scenarios of Table 11. For example, when the actual demand is 2 and 

the predicted demand is 4, the log error is 0.511, which is almost three times more serious 

than when the actual demand is 1000 and the predicted demand is 1200. In fact, minimum 

actual count occurs often between midnight and 6 a.m. Between 2 and 4 a.m., the hourly 

demand ranges from 0 to 66 while the median and average demand is 6 and 8.9, 

respectively. 

To understand how this affects our results, we plot the absolute error in logarithmic 

demand against the actual count (Figure 7) when our gradient boosting model was used to 

predict a 20% validation set with 2,177 instances. We notice that larger logarithmic errors 

are indeed being made when the count is low. Furthermore there is a bias towards 

overestimation. Beyond an actual count of 200, the absolute logarithmic error is mostly 

less than 0.182, or a 20% misprediction (see Table 11).  

Figure 7.  Logarithmic Error vs. Actual Count 

 
Left: raw logarithmic error / Right: absolute logarithmic error 

The decision trees in Figure 8 present the same information, but offer a better 

quantitative feel of how the RMSLE score is affected by missed predictions when the 

demand is low. In the tree on the left, the mean error in logarithmic demand is 0.3 when 

the count is less than 6.5 (177 cases), the mean error for the rest of the cases is only -0.03. 
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With the tree on the right, the absolute error is 0.32 when the actual demand is less than 54 

(612 cases). This drops to 0.15 when the predicted demand is more than 54 (1,565 cases).   

Figure 8.  Error in Logarithmic Demand vs. Actual Count (Decision Tree) 

 
From this analysis, we can conclude that RMSLE is not the most suitable evaluation 

metric if we are most interested in resource allocation when demand is high. A weighted 

RMSLE may be a possible alternative, but for the competition and the main results of this 

thesis, we did use RMSLE. 

F. MODEL FINE-TUNING USING THE RANDOM FOREST ALGORITHM 

From Table 8, we saw that Random Forest and Gradient Boosting achieved similar 

performance. Although Gradient Boosting is relatively faster, we found it much harder to 

tune and more prone to overfitting on this dataset than Random Forest. Random Forest 

produced very stable cross-validation RMSLE (using more than 200 trees) once the best 

value of the number of variables to choose at each split was determined. For the rest of this 

thesis, we focused on Random Forest as the algorithm for further experiments to improve 

our modeling. We used 10-fold cross-validation RMSLE and test set RMSLE to evaluate 

our experiments. We also provide the ranking for each model by submitting the results to 

the Kaggle website after the competition has ended since rankings are constantly in flux 

when the competition is still open. The findings are described in the following paragraphs. 
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1. Predicting Casual and Registered Demand Separately  

As we saw in our data visualization (Figure 3), casual and registered users exhibit 

different behavior, so it was natural to check if creating two sub-models to predict the 

demand from each group would improve performance. We performed a 10-fold cross 

validation with the training set to obtain the cross-validation RMSLE, and obtained the test 

set RMSLE by submitting the predictions to the Kaggle website. The results are presented 

in Table 12.   We can see that there is indeed an improvement in performance. From this 

point on, we use only two sub-models for further performance tuning. We refer to this our 

base model. 

Table 12.   Effect of Using Separate Models to Predict Registered and Casual 
Users vs. Using a Single Model to Predict Count 

Algorithm 
RMSLE  
(Cross 

Validation) 

RMSLE (Test 
Set) 

Ranking  
(out of 3252 

teams) 
Single Model 

(direct prediction of count) 0.330 0.42388 505 

Base Model  
(use two sub-models to 

predict registered and casual)  
0.319 0.41104 357 

 

2. Feature Selection 

As discussed in Chapter III, there are obvious correlations in several input variables 

(e.g., weekday and working day). There is therefore a possibility that prediction accuracy 

can be improved by selecting a subset of the number of input variables. The selections 

could be different for casual and registered users. Even with a relatively small number of 

variables (12), the number of combinations to build different models grows very quickly, 

so we referred to variable importance in Tables 9 and 10, and applied some heuristics to 

limit the exploration space. From the initial 12 variables, we eliminated windspeed and 

holiday as factors because they were ranked lowest in variable importance (%IncMSE) for 

both registered and casual users (see Tables 9 and 10). From the remaining 10 variables, 

we selected 6 variables to be included in all subsets based on their %IncMSE values for 

registered and casual users (see Tables 9 and 10) while avoiding variables that were 
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strongly correlated. We selected all combinations of the last four variables. Table 11 

presents our variable-selection scheme.   

Table 13.   Variable-Selection Scheme 

 Included in all subsets Variable Type 
1 year Categorical (2011 or 2012) 
2 workingday Categorical (as per Table 1) 
3 day  Categorical (Sunday to Monday) 
4 hour Categorical (0 to 23) 
5 atemp Numeric (as per Table 1) 
6 humidity Categorical (as per Table 1) 
 Choose All Possible Combinations  
7 month Categorical (1 to 12) 
8 season Categorical (as per Table 1) 
9 weather Categorical (as per Table 1) 
10 temp Numeric (as per Table 1) 
 Eliminated  
11 holiday Categorical (as per Table 1) 
12 windspeed Numeric (as per Table 1) 

 

The variable-selection scheme in Table 13 has 16 different subsets requiring 16 

cross-validation runs. We chose to perform 5-fold cross-validation with 200 trees. Table 

14 presents the RMSLE for the sub-models (casual and registered) and the combined model 

(count) for the 16 different variable subsets. The best performance (RMSLE=0.317) was 

achieved by selecting (month + weather) or (month + weather + season) along with the six 

core variables (year, working day, day, hour, atemp, and humidity). Unfortunately, none 

of the combinations produced significantly better results than the base model 

(RMSLE=0.319).   From Table 12, we can see that the RMSLE for casual is significantly 

higher than for registered, but the overall RMSLE is very close to that for registered users, 

likely due to the fact that there are a lot more registered users than casual users. There are 

also more than twice as many non-working days than working days. It is on these days that 

registered users greatly outnumber casual users (see Figure 3).  
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Table 14.   Results of Cross Validation 

Variables included 
in all runs month season weather temp RMSLE 

(casual) 
RMSLE 

(registered) 
RMSLE 
(count) 

year, working day, 
day, hour, atemp, 

humidity 

    0.550 0.392 0.389 
x    0.498 0.330 0.330 
 x   0.514 0.338 0.338 
  x  0.534 0.376 0.372 
   x 0.539 0.385 0.382 
x x   0.495 0.329 0.329 
x  x  0.486 0.318 0.317 
x   x 0.496 0.330 0.330 
 x x  0.501 0.324 0.324 
 x  x 0.511 0.337 0.337 
  x x 0.524 0.372 0.368 
x x x  0.483 0.317 0.317 
x x  x 0.494 0.331 0.331 
x  x x 0.486 0.320 0.319 
 x x x 0.499 0.325 0.325 
x x x x 0.485 0.321 0.320 

The 6 variables in the first column are included in all 16 subsets. A cross under a variable 
column means that the variable is included in the subset of features.  

The findings from the cross-validation runs did not justify reducing the number of 

variables, although there is still a possibility that a reduced set could improve the 

performance with respect to the test set. In fact, our best result for the test set was obtained 

by using a set of variables (see Table 15) that were in a script published on the Kaggle 

website, which we used as starter code for running our own experiments. There was no 

mention by the author of how this set of variables was selected, but we obtained a test set 

RMSLE of 0.3852 for a ranking of 141st out of 3,252 teams. Since it was our best test set 

prediction, we used this as our final submission to the competition. However, for the rest 

of thesis, we elected to keep the entire set of 12 variables to continue with further 

experiments. 
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Table 15.   Variables that Produced our Best Test Set RMSLE 

Algorithm Variables 
Casual Users year, working day, day, hour, atemp, humidity, temp 

Registered Users year, working day, day, hour, atemp, humidity, season, weather 
The variables were used in the script published on https://www.kaggle.com/bruschkov 
/bike-sharing-demand/0-433-score-with-randomforest-in-r/code 

3. Adding Features to Improve Prediction for Wee Hours 

As discussed earlier, the RMSLE tends to be high when the actual count is low. 

This occurs most often during hours between midnight and 5 a.m. In order to improve 

prediction during these hours, we added a feature called wee_hours which is a binary 

variable that has value 1 for hours between midnight and 5 a.m. and 0 otherwise. We further 

hypothesized that the demand for bicycles during hours before midnight and wee hours is 

especially sensitive to whether it was a working day the following day or the previous day. 

Therefore, we added two other binary variables work_tmr and work_ytd as features which 

simply mirror the values of the binary variable working_day for the following day and the 

previous day, respectively. We manually added the boundary cases for January 1, 2011 and 

December 31, 2012. Table 16 presents the results of the experiment. With the new features, 

we managed to reduce RMSLE for both the cross-validation set and the test set. 

Table 16.   Adding Features to Improve Predictions during Wee Hours 

Algorithm 
RMSLE  
(Cross 

Validation) 

RMSLE (Test 
Set) Ranking 

Base Model 0.319 0.41104 357 
With Features for Wee Hour 0.314 0.40665 285 

4. Accounting for Trends (Moving Average and Week Number) 

 

As described in Chapter III, including the moving average of demand as a factor 

may improve prediction since it would help account for multiday trends like user growth 

and seasonal variations. We decided to take the average hourly demand over the past seven 

days as a factor. The computation of the seven-day average demand (MA7) was 
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complicated by the fact that our training set was not continuous. This was overcome by 

using a first model to predict the demand and using it as a proxy to estimate MA7, as 

described in Chapter III. Table 17 presents the results from this approach. The introduction 

of MA7 improved the results for the 10-fold cross validation error from 0.319 to 0.314. 

Although the improvement was small, it was consistent across the 10 different cross-

validation folds. Unfortunately, this resulted in a very slight increase in test set error from 

0.41274 to 0.41426. However, given the fact that the test set error can exhibit variations of 

about ±0.005 when a different random set is used, this increase is not statistically 

significant. 

As a next step, we added a new numerical feature called week_number to represent 

the number of weeks lapsed with respect to January 1, 2011 to experiment if it complements 

MA7 in modeling demand growth. As a hypothetical example, if a large number of new 

kiosks or bikes were added in Week 30, causing ridership to increase overnight, our 

previous model would not be able to detect such changes accurately because year, month 

and day have all been modeled as categorical variables. Adding week_number again 

improved the cross-validation RMSLE consistently over the 10 folds, but resulted in an 

increase in RMSLE in the test set, possibly due to overfitting (see Table 17). 

Table 17.   Adding Features to Account for Trends (Moving Average and 
Week Number) 

Algorithm 
RMSLE  
(Cross 

Validation) 

RMSLE 
(Test Set) Ranking 

Base Model 0.319 0.41104 357 
With 7-day Moving Average 0.314 0.41426 385 
With 7-day Moving Average  

and Week Number 0.308 0.42314 470 

 

5. Combining the New Features 

We experimented with combining the new features from the two preceding sections 

with the base model. The results are presented in Table 16. The best result for cross-

validation RMSLE was obtained by adding MA7 and Week Number as features. However, 
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this combination produced the worst test set RMSLE. On the other hand, the best results 

for test set RMSLE was obtained by combining the Base Model with the Wee Hour 

Features (i.e., wee_hours, work_tmr, and work_ytd). This combination had the second 

poorest RMSLE from cross-validation. 

Table 18.   Combining New Features with Base Model 

Base 
Model 

Additional Features Results 
With 
Wee 
Hour 

Features 

With 7-
day 

Moving 
Average 

With 
Week 

Number 

RMSLE 
(Cross 

Validation) 

RMSLE 
(Test Set) Ranking 

x    0.319 0.41274 373 
x x   0.318 0.40665 285 
x  x  0.314 0.41426 385 
x x x  0.312 0.41130 363 
x  x x 0.308 0.42314 496 
x x x x 0.309 0.41993 454 
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V. CONCLUSION 

A. SUMMARY OF FINDINGS 

This thesis explored a range of machine-learning algorithms to predict hourly 

demand in a bike-sharing system. We found tree-based regression algorithms to perform 

the best among the tested algorithms. Specifically, the Random Forest and Gradient 

Boosting algorithms produced the best results when applied to the test set. The Random 

Forest algorithm was easier to tune as the performance tended to be more stable when 

parameters are tweaked. Tuning the Gradient Boosting algorithm required more 

experimentation to find the parameter settings that produced the best results. Gradient 

Boosting was also prone to overfitting on this dataset. However, Gradient Boosting was 

significantly faster than Random Forest once the right settings were found. 

In the following phase of the study, we fine-tuned a model using the Random Forest 

algorithm. From factor importance metrics produced by Random Forest, we confirmed our 

intuition and statistical analysis that the demand from casual users and registered users 

were driven by different factors. It made sense to train two different models to predict the 

demand for each group. This improved the results for both cross-validation RMSLE and 

test set RMSLE. All subsequent experimentation was based on this two sub-model 

approach, which we call the base model (10-fold cross-validation RMSLE=0.319, test set 

RMSLE=0.42388) 

Next, we experimented with feature selection to find out if a subset of variables 

would produce better results than the full set, due to correlations between many of the 

features. We used five-fold cross-validation to try out 16 different combinations of the 12 

original features. The 16 combinations were chosen by retaining six of the most important 

features, eliminating the two least important, and performing a full factorial combination 

of the four remaining features. The cross-validation results did not look promising, with 

only two of the 16 combinations producing any improvement, and it was marginal 

(RMSLE=0.317). Interestingly, we managed to get our best test set RMSLE of 0.3852 by 

using a different subset of variables from a published script that we used as starter code. 
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However, since we did not understand how the variables were selected, we elected to 

continue experimenting with all 12 of the original features. 

In further experiments, we added three features (wee_hours, work_ytd, and 

work_tmr) to improve prediction for the hours between midnight and 5 a.m., which 

improved the test set RMSLE (0.40665). In a parallel experimentation, we also added the 

seven-day moving average for hourly demand and week number as additional features to 

account for temporal dependences. This improved the 10-fold cross-validation RMSLE to 

0.308. However, there was a discrepancy between improvements in cross-validation 

RMSLE and test set RMSLE. 

B. LESSONS LEARNED 

We found Random Forest and Gradient Boosting to be suitable algorithms to 

predict hourly demand in similar resource-sharing systems. Random Forest achieved very 

good results with minimal tuning and is a good candidate for modeling similar datasets 

(e.g., subway usage and traffic flow). Depending on the accuracy required, it may be 

profitable to build separate models for distinctly different groups of users (e.g., casual and 

registered), although models that predict the aggregate count directly did fairly well. 

From an economic perspective, we should be most concerned with missed 

predictions during peak hours. However, RMSLE as a measure of performance 

overcompensates for errors made during off-peak hours. We recommend using an 

alternative error measurement such as a weighted RMSLE to accurately reflect economic 

objectives, or simply building models solely for peak-hour traffic. 

Beyond the basic Random Forest and Gradient Boosting models, we performed 

several experiments to try to boost our ranking from 373rd out of 3,000 teams. We tried 

eliminating features (feature selection) systematically using cross-validation error, but did 

not find good candidate features. However, our best-performing model in terms of test set 

RMSLE was fortuitously obtained by using a set of variables from a published script which 

we forked. This discrepancy between cross-validation error and test set error reemerged 

when we tested different ideas for feature engineering and saw decreases in cross-

validation error that caused increases in test set error in some cases. This could be caused 
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by overfitting due to model complexity, and was possibly exacerbated by the way the test 

set was sampled in this competition. Our test set was carved out from the last 9–12 days of 

each month and it is possible that some patterns in the test set were never encountered in 

the training set. We recommend using random sampling to form training sets to minimize 

this risk.  

C. RELATED WORK 

Prediction models such as those addressed in this thesis have several possible 

applications. Kolka (2011) discussed how to prescribe the number of bicycles to be 

repositioned (by trucks) from one station to another to minimize shortage based on demand 

forecast. However, this would require forecasting models to be built at a higher granularity 

(i.e., per station or neighborhood) rather than at the aggregate level. Fanaee-T and Gama 

(2013) studied the use of predictor ensembles as detectors to automatically flag outliers 

(i.e., spikes in demand) in order to detect anomalous events. Froehlich, Neumann,  & Oliver 

(2009) used bike-sharing data to glean insights on city dynamics from a cultural and space-

time perspective. The lessons learned from this thesis can also be applied to similar datasets 

to predict demand for other forms of public transportation and support operations planning.  
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